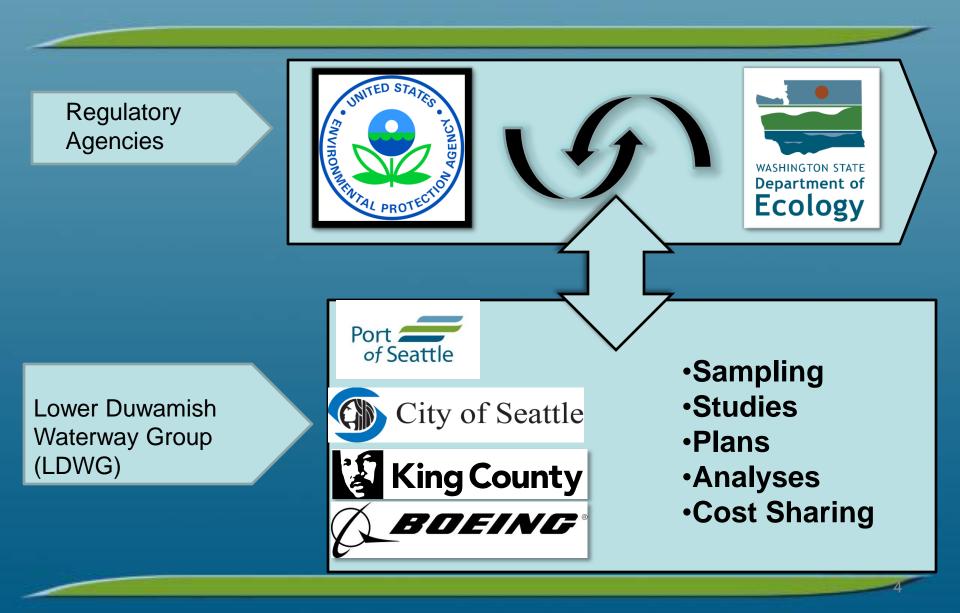


Briefing on the Lower Duwamish Waterway Superfund Site

Briefing Summary

- Cleanup required of contamination in Lower Duwamish to protect human health and ecological environment
- Feasibility Study presents array of alternatives to conduct cleanup
- All alternatives predicted to protect environment in long term – 90% reduction in PCBs achieved
- Short term differences include impacts of actions, length of time to reduce risk, and cost
- EPA and Ecology will select cleanup alternative

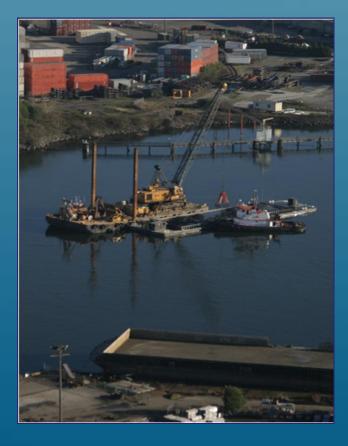
Lower Duwamish Waterway Superfund Site



Industrial and Cultural Legacy, Economic Engine, Growing Communities

- 5-mile stretch, about 441 acres, range of industrial contaminants
- Listed as Superfund site in 2001
- Studies define contamination and risk
- LDWG invested \$40 million to move process forward, and is pursuing early action cleanups of prioritized contaminated areas
- Duwamish Valley supports over 100,000 jobs and 80% of City's industrially-zoned land

Roles and Responsibilities


Getting Oriented – Sediment **Contamination and Early Action Areas**

Risk Drivers

- Dioxin
- cPAHs
- PCBs
 40+ state Arsenic "sediment management standard" chemicals
- Five Early Action Areas under way (hatched)
- Remaining hot spots require cleanup (yellow)

Key milestone: October 15 Getting closer to cleanup decision

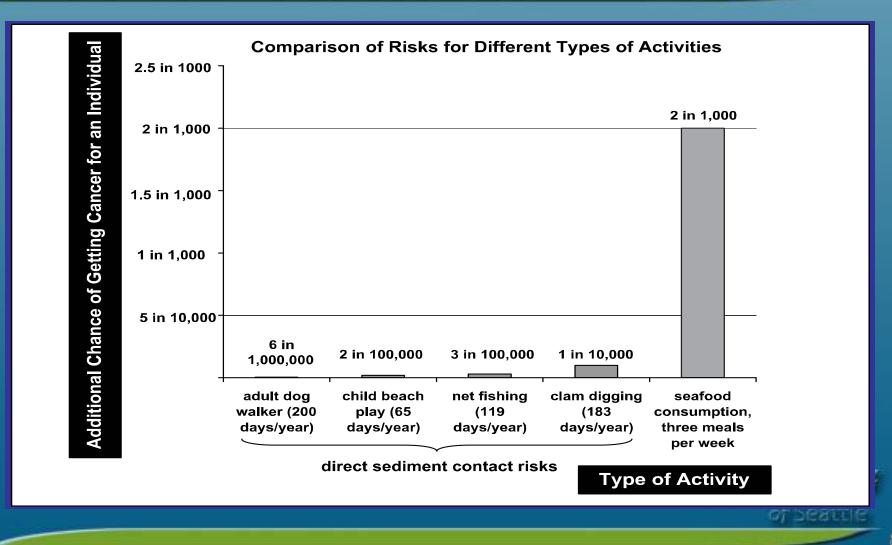
- Draft Final Feasibility Study October 15 <u>www.ldwg.org</u>
- FS edited with significant EPA/Ecology input
- Focused agency and public review through end of year
- Public input key to regulators selecting preferred cleanup alternative
- Stakes are high time is now to engage region and provide input

Cleanup Goals

Seafood Consumption

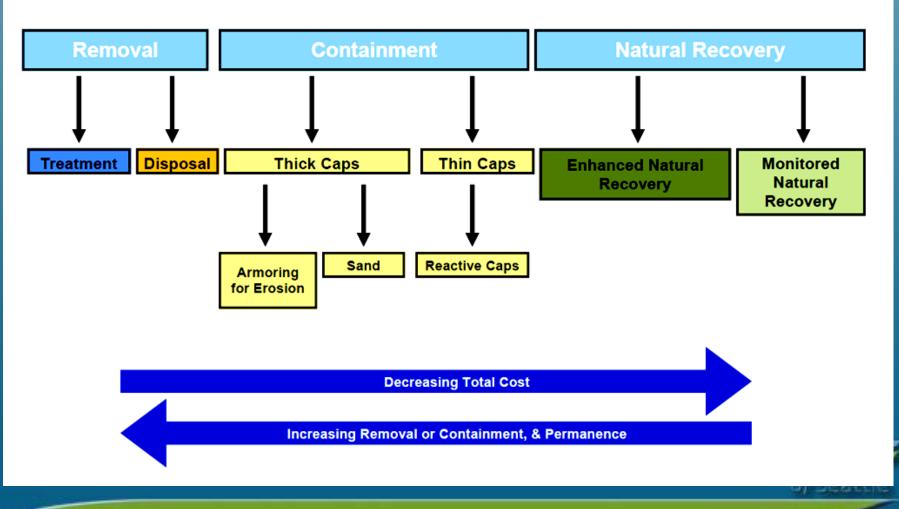
 Direct Contact with Contaminants

 Worms and Benthic Invertebrates

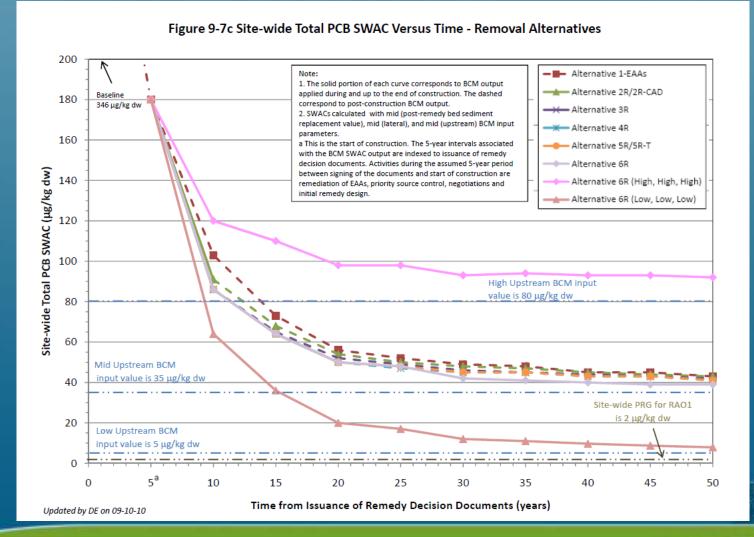

• Fish and Wildlife

Cleanup goal is to reduce risk. How will we go about It?

Risk Levels in Lower Duwamish: Baseline Risk Assessment

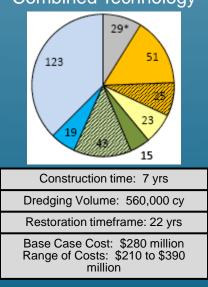


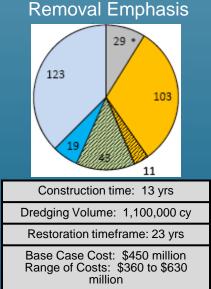
Alternatives in FS

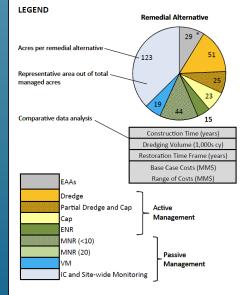

- 12 Alternatives developed and evaluated in FS
- Alternatives vary by:
 - Types of technologies (dredge or cap)
 - Size of footprint requiring action
 - Amount of natural processes vs. active
 - Predicted time to reduce risk in sediment (12 to 43 year)
 - Certainty of time to reduce risks
 - Cost (200 Mil to 1,330 Mil)

Multiple Technologies Available

All Alternatives Designed to Meet Cleanup Objectives

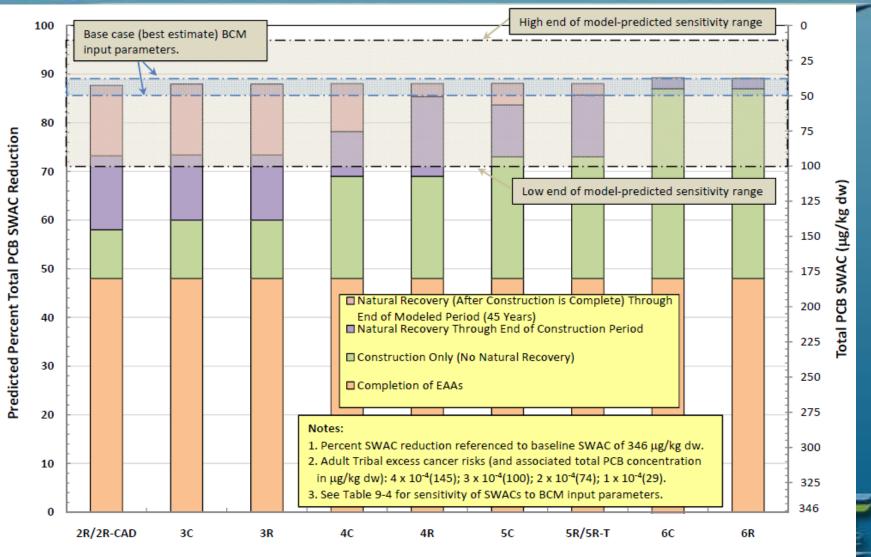



Alternatives Vary in Time to Meet Objectives


Alternative	Time to Meet All Objectives
4C	12 years
5C	13 years
3C	14 years
3R	16 years
4R	18 years
2R CAD	19 years
2R	19 years
6C	23 years
5RT	24 years
5R	24 years
6R	43 years
	Rom 🥭
	of Seattle

Range of Alternatives Evaluated – Varying technologies and footprints

EXAMPLES: Alternative 4 actively remediates 143 acres (full range is 29-328 acres) Alternative 4 -Combined Technology Alternative 4 -Removal Emphasis



Primary Differences:

- "Combined" alternatives emphasize mix of active technologies.
- "Removal" alternatives focus more on dredging rather than other active technologies.
- Costs range from \$200 million to \$1.3 billion, construction timeframes from 4-38 years.

(Note: handout with more detailed charts)

Reduction in PCBs achieved in different ways

Remedial Alternatives

Tradeoffs to Consider – "Combined" vs. "Removal"

Dredging

- Considered more permanent in long term
- Causes most impact during construction
- Larger dredge volumes mean longer construction, truck/train transport impacts (traffic, emissions), community and worker impacts
- Non-dredge methods (capping, engineered and monitored natural recovery)
 - Get done faster and cheaper
 - Less short-term impacts than dredging
 - May require more maintenance over time
- All technologies require monitoring to ensure they are functioning as intended

Moving toward Cleanup

	2010	2011	2012	2013	future
Review period Draft Final Feasibility Study (10/15/10 – 12/17/10)					
Public meeting on Feasibility Study (12/9/10)	*				
Agreement on approved Final Feasibility Study (May-July 2011)					
Agency community and stakeholder outreach (July-Dec 2011)					
Likely liability allocation (2011-2013)					
Agency proposed plan for public review (Jan 2012)					
EPA and Ecology decision on remedy (Jan 2013)					
Design, construction, monitoring (2013-ongoing)					
Source control implemented (ongoing)					
Public involvement and outreach (ongoing)					of Spatt
Early actions (2011-beyond)					

Funding Impacts to Region

- Range of cleanup costs large, and don't include other support activities (source control, EAAs)
- Liability will likely be allocated broadly
- Public agency projections of impacts to tax and ratepayers are being developed
- Local and regional businesses will absorb costs, potential impacts on business health and investment
- Uncertain availability of MTCA grant money to local governments

Key Stakeholders are Involved

- EPA and Ecology
- U.S. Army Corps, NOAA, U.S. Fish and Wildlife
- WDFW and DNR
- Tribes
- Duwamish River Cleanup Coalition (DRCC)
- Local residents and businesses
- Potentially responsible parties
- Seattle and King County ratepayers/taxpayers

Community Outreach Is Ongoing

- Joint outreach to community groups with EPA, Ecology, DRCC
- Outreach to non-English speaking communities
- ECOSS hosting business meetings
- Web-based availability of documents and online comment opportunity
- EPA/Ecology public meeting December 9

Briefing Summary

- Revised Feasibility Study moves us closer to a cleanup decision
- Moving forward with cleanup is critical to reduce risks to community and environment
- Alternatives vary in time, impacts, and cost
- Funding impacts to businesses, Port, and municipalities
- EPA and Ecology will select cleanup alternative that best meets their objectives

Port ______ of Seattle

Where a Sustainable World is Headed www.portseattle.org